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S.1 Calibration details For Figure 5

In Figure 5, we explore how the initial pace of innovation influences the impact of forward
protection through its effect on the use of RPAs. Specifically, we display the change in economic
growth associated with strengthening forward protection from s0 = 0.15 to s = 0.30 in three
cases where patent lifespan equals 6, 11, and 16 years in the initial equilibrium. We repeat this
exercise across values of ηx ∈ [0, 1] in increments of 0.05. For each of the 21 values of ηx, we set δ

accordingly then calibrate γ to match the innovation rate associated with each of the three patent
lifespans. The resulting calibrated parameter values are listed in Table S.1. All other parameters
remain as reported in Table 1.

Table S.1: Calibration for Figure 5

ηx value 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

δ 0.00 0.875 0.937 0.959 0.971 0.978 0.983 0.986 0.989 0.991 0.993
γ (2/I = 6) 0.438 3.23 5.88 8.39 10.8 13.0 15.2 17.2 19.2 21.1 22.9
γ (2/I = 11) 0.327 2.41 4.38 6.23 7.98 9.64 11.2 12.7 14.1 15.5 16.8
γ (2/I = 16) 0.196 1.44 2.60 3.69 4.72 5.69 6.61 7.48 8.31 9.11 9.87

ηx value 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 –

δ 0.994 0.995 0.996 0.997 0.998 0.998 0.999 0.999 0.999 1.00 –
γ (2/I = 6) 24.6 26.3 27.9 29.5 31.0 32.5 33.9 35.3 36.6 37.9 –
γ (2/I = 11) 18.1 19.3 20.5 21.6 22.7 23.7 24.8 25.8 26.7 27.7 –
γ (2/I = 16) 10.6 11.3 11.9 12.6 13.2 13.8 14.4 15.0 15.5 16.1 –

*Department of Economics, Rensselaer Polytechnic Institute, Troy, NY 12180, United States. Email address:
kleinm5@rpi.edu.

†Department of Economics, University of Macau, Taipa, Macao, China. Email address: yibai.yang@hotmail.com.

1



S.2 Discussion of Optimal Patent Policy

In Section 4 of the main text, we show that the model features a single dynamic distortion
arising from the allocation of non-specialized labor between the production of final goods and
R&D. We then argue that the model tends toward an equilibrium in which the proportion of labor
employed in R&D is inefficiently low. In this Section, we numerically examine the implications
of this tendency for optimal patent policy.

We begin by illustrating the relationship between social welfare and the innovation rate across
a (θ, s) policy grid using the calibrated model as described in Section 5. We focus on two rep-
resentative cases: the ηx = 0 case, where RPAs have no impact on innovation difficulty, and the
ηx = 0.848 case, where RPAs are a highly effective innovation deterrent. We examine the entire
feasible range of patent policy, s ∈ [0, 0.5] and θ ∈ [1, λ]. All other parameters remain as reported
in Section 5. For illustrative purposes, we express backward patent protection in terms of its
corresponding markup over marginal cost relative to the markup with full backward protection,
(θ − 1)/(λ − 1) ∈ [0, 1]. Given the calibrated value of λ = 1.1163, the baseline value of θ = 1.08
used in Section 5 corresponds to (θ − 1)/(λ − 1) = 0.688.

As is apparent from Figure S.1, we find that changes to patent policy improve welfare if and
only if they increase the innovation rate. As a result, the growth-maximizing patent policy is
socially optimal in both cases. Intuitively, this is because the market equilibrium innovation rate
remains below the socially optimal innovation rate across the entire patent policy grid. Optimal
patent policy reduces the magnitude of the equilibrium misallocation of labor resources to the
extent possible, but cannot eliminate it fully. Since strengthening backward protection always
increases innovation, this implies that full backward protection is optimal in both cases. This is
equivalent to preventing all imitation in our model. The associated optimal forward protection is
case-specific and depends on whether stronger forward protection increases or decreases inno-
vation. Since strengthening forward patent protection always reduces innovation when ηx = 0,
optimal patent policy in this case is (θ⋆ = λ, s⋆ = 0). When ηx = 0.848, the equilibrium in-
novation rate associated with θ⋆ = λ is sufficiently high such that forward protection increases
innovation. Thus, optimal patent policy is (θ⋆ = λ, s⋆ = 0.5) in the case of ηx = 0.848.

These findings echo a large Schumpeterian growth literature that typically either assumes
perfect backward patent protection, or otherwise rules out all imitation, and still finds substan-
tial equilibrium underinvestment in R&D. Indeed, in influential analyses of this issue, Jones and
Williams (2000) and Denicolo and Zanchettin (2014) conclude that R&D underinvestment per-
sists in this class of endogenous growth models unless the monopoly-distortion effect discussed
in Section 4 is exceptionally large or R&D is subject to significant congestion externalities that
generate aggregate diminishing returns to R&D. Since we assume constant returns to scale in
R&D and do not consider alternative policy remedies for this equilibrium inefficiency, namely
R&D subsidies, we find that using patent policy to promote economic growth improves wel-
fare.1 Of course, the stark nature of our finding that it is socially optimal to implement the
growth-maximizing patent policy should be interpreted cautiously and with these aspects of our

1Although it is possible to generate inefficiently high equilibrium R&D investment in our model within the (θ, s)
policy grid that we consider, doing so requires implausible parameter values. In particular, it requires a very high
value of λ so that the corresponding monopoly-distortion effect is sufficiently large. An analysis of this case is
available from the authors upon request.
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Figure S.1: Illustration of optimal patent policy

(a) ηX = 0: Innovation rate (b) ηX = 0: Welfare

(c) ηX = 0.848: Innovation rate (d) ηX = 0.848: Welfare

Figure S.1 displays the equilibrium innovation rate and social welfare associated with different
patent policy combinations in two cases where ηx = 0 and ηx = 0.848. Since the innovation rate goes
to zero when backward protection is sufficiently weak, we display results for (θ − 1)/(λ − 1) ≥ 0.4.
Other than (θ, s), parameters remain as reported in Section 5.

modeling framework in mind. Nevertheless, our analysis demonstrates that forward patent pro-
tection can stimulate innovation through its interaction with patent holders’ endogenous RPAs
incentives, and thus, can play a role in growth-enhancing patent policy.

S.3 A Lab-Equipment Setting

In this section, we briefly demonstrate that the fully mobile labor version of the model ex-
amined in Section 6.1 is equivalent to a lab-equipment setting in which the input for both RPAs
and R&D is a final consumption good. As in Section 6.1, we focus on the simple case where
innovation difficulty D(t) depends only on RPAs (δ = ηx = 1). Thus, the innovation rate is given
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by I(t) = R(t)/(γX(t)), where R(t) and X(t) denote the quantity of the final good devoted to
R&D and RPAs respectively.

The lifetime utility of each household is given by

U ≡
∫ ∞

0
e−(ρ−n)t ln c(t)dt, (S.1)

where c(t) denotes the per capita consumption. The dynamic optimization problem is to choose
c(t) to maximize (S.1) subject to the intertemporal budget constraint of ȧ(t) = (r(t)− n)a(t) +
w(t)− p(t)c(t), where p(t) is the price of final good. This yields the familiar Euler equation,

ċ(t)
c(t)

+
ṗ(t)
p(t)

= r(t)− ρ. (S.2)

The final good y(t) is competitively produced by a unit continuum of intermediate goods m(t, i)
for i ∈ [0, 1] according to the Cobb-Douglas production function:

y(t) = exp
(∫ 1

0
ln m(t, i)di

)
. (S.3)

Profit maximization yields the conditional demand for m(t, i) such that m(t, i) = (p(t)y(t))/pm(t, i),
where pm(t, i) is the price of m(t, i).

Each intermediate good i is manufactured by a typical monopolistic firm employing labor
according to the following production function:

m(t, i) = λq(t,i)L(t, i), (S.4)

where λ measures the step size of each quality improvement, q(t, i) is the number of innovations
between time 0 and time t, and L(t, i) is the production labor in industry i. The marginal cost
of producing an intermediate good is w(t)/λq(t,i). The profit-maximizing price is a constant
markup over the marginal cost such that pm(t, i) = θ(w(t)/λq(t,i)), where the wage rate w(t) is
normalized to unity and the markup θ is the policy parameter for backward protection. The
profit of this typical monopolistic firm is

π(t) =
(

θ − 1
θ

)
pm(t, i)m(t, i) =

(
θ − 1

θ

)
p(t)y(t).

Free entry into research implies the first-order condition such that I(t)V1(t) = p(t)R(t), and
substituting this expression into the innovation rate I(t) yields

V1(t) = γp(t)X(t). (S.5)

Omitting the dt notation, the no-arbitrage condition for the most recent innovator is

r(t)V1(t) = (1 − s)π(t)− p(t)X(t)− I(t)[V1(t)− V2(t)] + V̇1(t), (S.6)
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which implies that optimal RPAs expenditure is given by

I(t)[V1(t)− V2(t)] = p(t)X(t). (S.7)

Exactly as in (31), the ratio of the free-entry condition (S.5) and (S.7) yields the following,

I(t)[V1(t)− V2(t)]︸ ︷︷ ︸
RPAs

=
V1(t)

γ︸ ︷︷ ︸
R&D

. (S.8)

Since there is no change to the no-arbitrage condition for the second most recent innovator,
we can use (S.6) and (S.7), to derive the following equilibrium expressions for V1(t) and V2(t),

V1(t) =
π(t){(ρ − n + I) + s[I − (ρ − n)]}

(ρ − n + 2I)(ρ − n + I)
, V2(t) =

sπ(t)
ρ − n + I

. (S.9)

Substituting these expressions into (S.8) allows us to implicitly define I as a function of parame-
ters exactly as in (32),

γI{(ρ − n + I)− s[I + 2(ρ − n)]} = (ρ − n + I) + s[I − (ρ − n)]. (S.10)

Equation (S.10) immediately implies that the innovation rate I is unaffected by backward protec-
tion θ and increases with forward protection s. Fundamentally, this is because the innovation rate
is determined by relative R&D and RPAs investment. In both the lab-equipment and fully mobile
labor versions of the model, these two activities share a common input, and thus marginal cost.
This implies that the innovation rate is completely determined by the relative return to R&D and
RPAs according to equation (S.8). Since these returns are both proportional to π(t), neither back-
ward patent protection nor the overall scale of the economy have any impact on the innovation
rate.

Finally, aggregate technology Z(t) is defined as

Z(t) ≡ exp
(∫ 1

0
q(t, i)di ln λ

)
= exp

(∫ t

0
I(ω)dω ln λ

)
, (S.11)

where the last equality uses the law of large numbers. Since L(t, i) = L(t) for all i ∈ [0, 1],
substituting (S.4) into (S.3) yields y(t) = Z(t)L(t), where L(t) = N(t) is the total labor supply.2

Differentiating the log of Z(t) in (S.11) with respect to time yields the growth rate of technology
given by

Ż(t)
Z(t)

= I(t) ln λ.

Therefore, the growth rate of final good is given by

ẏ(t)
y(t)

=
Ż(t)
Z(t)

+
L̇(t)
L(t)

= I(t) ln λ + n.

2The main result in this setting continues to hold in the presence of elastic labor supply. Derivations are available
upon request.
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Consequently, the above expressions imply that the growth effects of {θ, s} in the lab-equipment
setting are identical to those in Subsection 6.1 with mobile labor. We summarize these results by
the following proposition.

Proposition S.1. In the lab-equipment model with δ = ηx = 1,

- Strengthening backward protection has no impact on economic growth.

- Strengthening forward protection always increases economic growth.

S.4 Extension: Endogenous Patent Protection

The baseline model assumes that each patent holder’s ability to prevent imitation and extract
licensing fees from competitors is exogenous and defined by the patent policy parameters θ

and s. In reality however, exercising the legal rights granted by a patent requires substantial
resources. In this subsection, we examine how our results may change when incumbents also
use RPAs to defend their existing patent against the threat that it will be invalidated in court. If
an incumbent’s patent is invalidated, the technology becomes freely available to imitators and
subsequent innovators, resulting in the loss of both the incumbent’s flow profits and claim over
future profits through licensing revenue. In this way, even though θ and s remain exogenous,
effective patent protection is endogenous since each incumbent’s ability to maintain its patent
rights depends on RPAs investment.

Let m(t) denote the instantaneous probability that a patent will be invalidated. Together with
the innovation rate, we define m(t) according to

I(t) =
LI(t)
D(t)

, m(t) ≡ µN(t)
D(t)

, (S.12)

where µ > 0 is a parameter that captures the tendency of courts to invalidate standing patents.
Note that the probability of patent invalidation increases with the size of the population. This
reflects the idea that patent holders in a larger market likely face more challenges to the validity
of their patents and must devote more resources to defend them. Since only incumbents with a
valid patent have an incentive to conduct RPAs, we define the common difficulty term D(t) as a
stock variable that grows with the use of RPAs and depreciates at a constant rate 0 < κ < 1. Let
Ḋ(t) ≡ γ[δnv(t)Lx(t) + (1 − δ)N(t)]− κD(t), where nv(t) denotes the proportion of industries
with a valid patent at time t.3 A constant steady-state innovation and patent invalidation rate
requires that D(t), Lx(t) and LI(t) all grow at the rate of population growth n. This implies that
Ḋ(t)/D(t) = n and that D(t) = γ[δnv(t)Lx(t) + (1 − δ)N(t)]/(n + κ).

To maintain a symmetric equilibrium structure, we assume that R&D firms make their in-
vestment decisions without knowing if there will be a valid patent in the industry at the time
they successfully innovate. The expected profit flow of a successful innovation is given by
Eπ(t) = (1 − nv(t))π(t) + (1 − s)nv(t)π(t). Omitting the dt notation, the no-arbitrage condition
associated with the expected value of a successful innovation is r(t)V1(t) = Eπ(t)−wx(t)Lx(t)−

3The stock variable formulation allows for the existence of a steady-state equilibrium in which all incumbents
choose the same Lx(t) while they have a valid patent and all industries share the same rate of innovation I(t).
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I(t)[V1(t)− V2(t)]− m(t)V1(t) + V̇1(t). Note that patent invalidation results in the loss of the in-
cumbent innovator’s total value V1(t). If innovation occurs while the incumbent’s patent is active,
the incumbent is entitled to a share of the new innovator’s profit sπ(t) until either the new inno-
vator has her patent invalidated or creative destruction occurs through further innovation. Thus,
the no-arbitrage condition for V2(t) is given by r(t)V2(t) = sπ(t) − (I(t) + m(t))V2(t) + V̇2(t).
Incumbent firms invest in RPAs to maximize their expected value V1(t). This results in the
following demand for RPAs for each firm with an active patent,4

Lx(t) =
ηx(t){I(t)[V1(t)− V2(t)] + m(t)V1(t)}

wx(t)
, (S.13)

where ηx(t) is the elasticity of innovation with respect to RPAs as before and the m(t)V1(t) term
represents the component of RPAs demand motivated by patent defense.

We focus on a symmetric equilibrium in which I(t), m(t) and nv(t) are constant. Thus, the
equilibrium flow into the valid patent pool (1 − nv)I must equal the flow out the pool nvm. We
obtain nv = I/(I + m). Since incumbents have a positive incentive to invest in RPAs only while
their patent is valid, the RPAs labor market clearing condition is αN(t) = nvLx(t). Imposing
this condition into the definition of D(t), allows us to write the constant equilibrium m and
ηx in terms of the parameters of the model such that m = µ(n + κ)/(γ[δα + 1 − δ]) and ηx =
δα(n + κ)/(δα + 1 − δ). Finally, we once again use the free-entry and non-specialized labor
market clearing conditions to derive two equations in I and c. Rewriting the free-entry condition
of V1(t) = D(t) gives,

γ[δα + 1 − δ]

n + κ︸ ︷︷ ︸
D(t)/N(t)

=
c
θ

[
θ − 1

(ρ − n + (1 + ηx)(I + m)

]{
s[ηx I − nv(ρ − n)]
(ρ − n + I + m)

+ 1
}

︸ ︷︷ ︸
V1(t)/N(t)

. (S.14)

The labor market clearing condition for non-specialized labor is given by (1 − α)N(t) = Lz(t) +
LI(t) = [(1 − nv) + nv/θ]cN(t) + LI(t). Note that industries without an active patent produce
under competitive conditions with a price equal to firms’ marginal cost of one. Using D(t), we
have

1 − α =
c
θ
[θ(1 − nv) + nv] +

γ(δα + 1 − δ)

n + κ
I, (S.15)

Repeating the analysis of Section 3, gives the following result

Proposition S.2. In the model with patent invalidation,

- Strengthening backward protection always increases economic growth.

- Strengthening forward protection increases (decreases) the equilibrium growth rate if the innovation
rate is sufficiently high (low), namely (ρ − n)/ηx − m < (>)I.

4Technically, incumbent firms are differentiated into two groups based on whether the previous incumbent in their
industry holds a patent claim to an s share of their flow profits. These groups would choose distinct levels of RPAs
investment in order to optimally defend their different profit flows. However, it is straightforward to show that our
approach, where all incumbents choose the same Lx(t) based on average profit flows Eπ(t) while their patents are
active, produces an identical equilibrium.

7



Thus, we continue to find that the growth impact of strengthened forward protection is
controlled by a threshold innovation rate that is determined by the magnitude of the growth-
reducing backloading effect and the growth-enhancing cost-saving effect. However, the presence
of patent invalidation does influence the relative importance of these two effects. On the one
hand, strengthening forward protection is less effective at reducing total demand for RPAs be-
cause an incumbent’s incentives to use RPAs to defend her existing patent is relatively insensitive
to changes in s. This tends to imply a smaller cost-saving effect than in the baseline model, par-
ticularly when the patent defense component of RPAs demand, mV1(t), is large. However, since
optimal RPAs expenditure still decreases in I[V1(t)− V2(t)], this effect still appears as a positive
sηx I term in (S.14). On the other hand, new innovators need only pay licensing fees if the previ-
ous incumbent holds a valid patent. This reduces the expected profit impact of increasing s and
implies a smaller backloading effect. Thus, the backloading effect appears in (S.14) as a negative
snv(ρ − n) term. Since nv = I/(I + m), the backloading effect is decreasing in the rate of patent
invalidation, with the baseline model corresponding to m = 0. All together, we find that forward
protection is more likely to be growth enhancing when patent holders also use RPAs to defend
against patent invalidation.

S.5 Characterizing the Equilibrium with Incumbent R&D

We begin by deriving the no-arbitrage conditions associated with each type of incumbent
firm. A firm that holds patent rights over the second most recent innovation in a typical industry
receives a flow of licensing payments sπ(t) until the next innovation arrives, either from a new
entrant or from the current quality leader. Omitting the dt notation, this implies the following
no-arbitrage condition, r(t)V2(t) = sπ(t)− [I(λ, t) + I(λ2, t)]V2(t) + V̇2(t). In equilibrium, this
yields

V2(t) =
sπ(t)

ρ − n + I(λ) + I(λ2)
. (S.16)

One-step quality leaders earn flow profits net of licensing payments (1 − s)π(t), hire spe-
cialized RPAs labor to impede competitor innovation, and hire R&D labor in pursuit of further
innovation. The associated no-arbitrage condition is, r(t)V1(λ, t) = (1 − s)π(t)− wx(t)Lx(λ, t)−
LI(λ

2) − I(λ, t)[V1(λ, t) − V2(t)] + I(λ2, t)[V1(λ
2, t) − V1(λ, t)] + V̇1(λ, t). Each one-step leader

chooses both Lx(λ, t) and LI(λ
2) to maximize their value. This optimization results in the de-

mand functions given by (34) and (35) in the main text and results in the following equilibrium
expression

V1(λ, t) =
(1 − s)π(t) + [1 + ηx]I(λ)V2(t) + (1 − β)I(λ2)V1(λ

2, t)
ρ − n + [1 + ηx]I(λ) + (1 − β)I(λ2)

. (S.17)

Two-step leaders also hire RPAs labor to defend their market position, but do not pay licensing
fees and have no incentive to hire R&D labor for further innovation. The associated no-arbitrage
condition is, r(t)V1(λ

2, t) = π(t)−wx(t)Lx(λ2, t)− I(λ, t)[V1(λ
2, t)−V2(t)]+ V̇1(λ

2, t). The value
maximizing choice of Lx(λ2, t) is given by (34) in the main text. In equilibrium, we have

V1(λ
2, t) =

π(t) + [1 + ηx]I(λ)V2(t)
ρ − n + [1 + ηx]I(λ)

. (S.18)
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In equations (S.17) and (S.18), we have used the fact that ηx is constant in a steady-state
equilibrium in which I(λ), I(λ2) and n(λ) are constant. This follows from the labor market
clearing condition for specialized RPAs labor and the definition of entrant innovation difficulty
as a stock variable with Ḋ(t) = γ[δLx(j, t) + (1 − δ)N(t)]− κD(t), where j ∈ {λ, λ2}. The stock
formulation allows for a steady-state equilibrium in which all industries share a common rate
of entrant innovation even though the level of RPAs employment at a particular time t differs
across industries depending if the industry has a one or two-step leader. As in the baseline
model, a constant rate of entrant innovation requires that the equilibrium growth rate of D(t)
equals the population growth rate, n, so that D(t)/N(t) is constant. For each industry, average
RPAs employment is given by L̄x(t) ≡ n(λ)Lx(λ, t) + [1 − n(λ)]Lx(λ2, t). The specialized labor
market clearing condition requires that L̄x(t) = αN(t). Thus, Ḋ(t)/D(t) = n implies that the
equilibrium entrant innovation difficulty is given by

D(t)
N(t)

=
γ[δα + (1 − δ)]

n + κ
, (S.19)

which corresponds directly to (18) in the main text, with the (n + κ) term in the denominator
capturing the accumulation of innovation difficulty over time given the stock formulation. The
marginal effect of RPAs labor in each industry is given by

∂I(λ)
∂Lx(j, t)

=

∣∣∣∣ ∂I(λ)
∂D(t)

∂D(t)
∂Lx(j, t)

∣∣∣∣ = I(λ)γδ

D(t)
(S.20)

Since D(t) is symmetric across industries, so is the effectiveness of RPAs. Using (S.19) and
L̄x(t) = αN(t), ηx is constant and given by

ηx =
δα(n + κ)

δα + 1 − δ
, (S.21)

which corresponds to equation (17) in the main text.
We characterize the equilibrium using three equilibrium conditions in three endogenous vari-

ables I(λ), I(λ2) and c. First, using the definition of incumbent innovation given by (33), one-step
leaders’ optimal choice of LI(λ

2, t) given by (35), and the value of each type of incumbent firm
given by (S.16), (S.17), and (S.18), we can derive the following "incumbent R&D condition,"

ϕI(λ2)
1−β

β

β
=

[
c(θ − 1)

θ

]{
s

ρ − n + [1 + ηx]I(λ) + (1 − β)I(λ2)

}
. (S.22)

This is identical to (36) in the main text. Second, using (S.16), (S.17) and (S.19), we derive the
"free-entry condition" given by (37) in the main text,

γ[δα + (1 − δ)]

n + κ
=

{
c(θ − 1)

θ[ρ − n + [1 + ηx]I(λ)]

}{
1 +

s[I(λ)ηx − (ρ − n)− I(λ2)Ω]

ρ − n + I(λ) + I(λ2)

}
, (S.23)

where

Ω ≡ β(ρ − n) + (β + ηx)I(λ)
ρ − n + (1 + ηx)I(λ) + (1 − β)I(λ2)

> 0.
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The final equilibrium condition comes from non-specialized labor market clearing, which
requires (1 − α)N(t) = Lz(t) + LI(λ, t) + n(λ)LI(λ

2, t). Note that incumbent innovation occurs
only in the n(λ) with a one-step leader. At each point in time, the flow of industries that transition
from a two-step leader to a one-step leader is [1 − n(λ)]I(λ), and the flow of industries that
transition from a one to two-step leader is n(λ)I(λ2). Thus, the constant equilibrium proportion
of industries with a one-step leader is

n(λ) =
I(λ)

I(λ) + I(λ2)
. (S.24)

Using (33), we can write the total labor used in incumbent R&D as

n(λ)LI(λ
2, t) = ϕN(t)I(λ2)1/β

[
I(λ)

I(λ) + I(λ2)

]
. (S.25)

Since all leaders charge the same price of θ, total employment in production remains Lz(t) =
cN(t)/θ. Using (33) and (S.19), LI(λ) = I(λ)D(t) = I(λ)N(t)γ[δα + (1− δ)]/(n + κ). This yields
the following "labor market clearing condition"

1 − α =
c
θ
+

{
γ[δα + (1 − δ)]

n + κ

}
I(λ) + ϕI(λ2)1/β

[
I(λ)

I(λ) + I(λ2)

]
. (S.26)

Finally, since both entrants and incumbents innovate, the equilibrium rate of economic growth is
given by,

g = ln λ[I(λ) + n(λ)I(λ2)] = I(λ) ln λ

[
1 +

I(λ2)

I(λ) + I(λ2)

]
, (S.27)

where [I(λ) + n(λ)I(λ2)] represents the aggregate innovation arrival rate.

S.6 Numerical Analysis: Incumbent R&D

We now provide a quantitative illustration regarding the impact of forward patent protection
when incumbent firms conduct R&D. We calibrate the model to the aggregate US economy
following the same approach as our baseline numerical analysis. In addition to the two policy
parameters {θ0, s0}, the model now features nine structural parameters {ρ, n, λ, α, δ, γ, β, ϕ, κ}.
Following our baseline calibration, we externally set θ0 = 1.08, s0 = 0.15, ρ = 0.05, n = 0.01 and
α = 0.0075. We set the degree of diminishing returns to incumbent R&D to β = 0.35 following
Acemoglu and Akcigit (2012). The parameter 0 < κ < 1 determines the depreciation rate of
entrant R&D difficulty. However, its only actual impact on the model’s equilibrium is to scale
D(t)/N(t) and ηx. In particular, (n + κ) sets the upper bound of ηx as seen in (S.21). We set
κ = 0.85 so that we are able to examine a case with a relatively high value of ηx. We note that the
flow form of D(t) used in the baseline model corresponds to full instantaneous depreciation.

We jointly calibrate the remaining four parameters λ, δ, γ and ϕ internally. As before, we
target a 2% rate of economic growth and an expected patent lifespan of 11 years. Patents continue
to remain profitable until two subsequent innovations occur. Since equation (S.27) shows that
economic growth remains equal to lnλ multiplied by the aggregate innovation arrival rate, the
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same value of λ = 1.1163 used in the baseline calibration ensures that an expected patent lifespan
of 11 years corresponds to 2% growth. We again calibrate δ to match a target firm average for
RPAs expenditure as a share of revenue. We separately consider the same four targets as in
Section 5 in the main text, namely 0.0%, 0.5%, 1.5% and 2.5%. Note that all firms earn the same
revenue of cN(t) and pay the same wage wx to specialized RPAs labor. This implies that average
RPAs expenditure across one and two-step incumbents as a proportion of revenue is given by
wx L̄x(t)/(cN(t)). Finally, we calibrate the incumbent innovation difficulty parameter ϕ to match
a target for a share of economic growth that is attributable to incumbent innovation. Empirical
estimates generally indicate that most innovation comes from incumbent firms (Garcia-Macia
et al., 2019). However, our model specifically isolates incumbent innovation that is motivated
by an ability to escape patent infringement and associated licensing fees. For the illustrative
purpose of this exercise, we choose a target of 20%. In general, the main pattern of results that
we highlight here are not sensitive to this choice of initial target. We summarize our calibration
approach in Table S.2.

Table S.2: Incumbent R&D calibration summary

Parameter Description Value Source/Target

External

ρ Discount factor 0.05 Standard
n Population growth rate 0.01 US labor force growth, BLS
α Proportion RPAs Labor 0.0075 Various, see fn. 14

β Incumbent R&D dim. returns 0.35 Acemoglu and Akcigit (2012)
κ Depreciation rate of D(t) 0.85 Imposed
s0 Initial forward protection 0.15 Chu (2009)
θ0 Initial backward protection 1.08 Basu (2019), see fn. 13

Internal

δ Innovation difficulty, RPAs 0.9908 RPAs exp. / revenue (1.5%)
γ Innovation difficulty, overall 16.150 Economic growth (2%)
ϕ Incumbent innovation difficulty 4.0000 Incumbent growth share (20%)
λ Innovation size 1.1163 Patent lifespan (11 years)
ηx(α, δ) Implied elasticity of I w.r.t. RPAs 0.3843 –

The results of our numerical analysis are displayed in Figure S.2. As discussed in the main
text, our first primary result is that strengthened forward protection can still stimulate entrant
innovation. Through the same cost-saving mechanism emphasized in the baseline model and il-
lustrated in Panel (e), entrant innovation remains most likely to increase in s when initial demand
for RPAs is high. The presence of incumbent innovation does introduce the innovation-reducing
escape infringement effect of forward protection on entrant R&D incentives as described in the
main text. This is most easily seen in the ηx = 0.384 case where average RPAs expenditure
is equal to 1.5% of firm revenue. In our numerical analysis of this case in the baseline model
without incumbent innovation, we found entrant innovation to increase monotonically with s.
Here however, entrant innovation increases in s only when s is very low. As s increases, I(λ2)
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increases, the escape infringement effect becomes more important and entrant innovation begins
to decrease in s. In the high ηx case where RPAs expenditure equals 2.5% of revenue, we continue
to find that the cost-saving effect is sufficiently important such that entrant innovation increases
monotonically in s.

Our second main result is that the potential for a differential impact of forward protection
on entrant and incumbent innovation can produce an inverted U-shaped relationship between
forward protection and economic growth. This is because incumbent innovation increases most
rapidly in s when s is low. In cases where entrant innovation declines in s, the rapid increase
in I(λ2) can still initially boost growth. When the decline in entrant innovation is sufficiently
large at higher values of s, economic growth begins to decrease in s. This pattern occurs even in
the ηx = 0 case, where the RPAs cost-saving mechanism is removed entirely. In fact, this result
directly corresponds to Chu and Pan (2013), who find a similar inverted U-shaped relationship
when firms have an incentive to pursue larger innovations in order to avoid licensing fees. In their
model, all R&D is conducted by potential market entrants that endogenously select an innovation
size. The inverted U-shaped relationship arises in their model due to the competing growth-
reducing backloading effect of forward protection and growth-enhancing effect of incentivizing
R&D firms to pursue larger innovations. Although incumbents pursue further innovation to
escape licensing fees in our model, the same essential forces are at work. Our analysis shows
that incumbents firms’ use of RPAs introduces an additional growth-enhancing role for forward
protection. When ηx is high, the cost-saving effect from RPAs can be sufficiently important such
that entrant innovation, incumbent innovation and economic growth all monotonically increase
in s.
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Figure S.2: Numerical analysis: incumbent R&D

(a) Entrant innovation I(λ) (b) Incumbent innovation I(λ2)

(c) Economic growth (d) Incumbent growth share

(e) One-step leaders RPAs (f) Two-step leaders RPAs

Figure S.2 displays the impact of forward protection in four initial equilibria corresponding to average RPAs ex-
penditure equal to a [0%, 0.5%, 1.5%, 2.5%] share of revenue respectively. The associated parameter values are δ =
[0.0, 0.9495, 0.9908, 0.9995], γ = [0.335, 5.432, 16.15, 27.97], ϕ = [5.00, 4.67, 4.00, 3.30] and ηx = [0.0, 0.106, 0.384, 0.804].
All other parameters remain as reported in Table S.2.
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